

LA-UR-20-21743

Approved for public release; distribution is unlimited.

Impedance/Dielectric Spectroscopy and Theory/Engineering Title:

Implications

Findikoglu, Alp Tugrul Yoon, Tae-Jun Author(s):

Vigil, Matthew Joseph Sharan, Prashant

Intended for: LDRD review

Issued: 2020-02-21

Impedance/Dielectric Spectroscopy and Theory/Engineering Implications

Alp T. Findikoglu, Tae Jun Yoon, Matthew J. Vigil, and Prashant Sharan

LDRD Project 20190057DR

PI: Robert Currier (C-PCS)

Co-PI: Artaches Migdissov (EES-14)

February 24, 2020

Motivation

- ☐ Impedance Spectroscopy (IS),
 ☐ Dielectric Spectroscopy (DS), and
 ☐ Cyclic Voltammetry (CV)
 - to understand ion structure and properties in water in large P/Tphase space
 - for in situ diagnostics and monitoring in batch and flow processes
 - (with electrodes) to apply external drive forces for selective ion removal

Introduction - I

☐ Impedance Spectroscopy (**IS**), dielectric spectroscopy (**DS**), and Cyclic Voltammetry (**CV**) method description

Introduction - II

- ☐ To understand ion structure and properties in aqueous solutions:
 - combine spectroscopic and electrochemical methods with modeling

Introduction - III

Use spectroscopic and electrochemical methods for in situ diagnostics and monitoring in batch and flow processes

Batch System

- 5000 psi, 500 °C
- In situ sampling
- In situ IS and DS

Flow System

- 5000 psi, 550 °C
- Two solution mixing
- In flow sampling
- In situ IS and DS

Introduction - IV

- ☐ Application of external drive forces for selective ion removal:
 - Faradaic (e.g., redox absorption) and Non-Faradaic (e.g., electrostatic adsorption) effects
 - Large-area and/or functionalized electrodes or transfer media
 - External drive induced/controlled adsorption, absorption, or permeation
 - External drive induced/controlled precipitation enhancement/inhibition

Possible paths:

- Electric field effects on ion transport (e.g., electric field across membrane)
- Electrostatic ion removal (e.g., CDI, MCDI)
- Electric field driven nucleation/growth (e.g., Electrostatic precipitator for salts)

R&D Approach & Current Status

Experimental Conditions	IS		DS		CV		Ext. Force	
	EXP.	SIM.	EXP.	SIM.	EXP.	SIM.	EXP.	SIM.
Ambient Conditions	✓	✓	✓	✓	✓	✓	✓	✓
Elevated P and T	✓	✓	✓			✓	✓	✓
Near/supercritical	✓	✓	✓	✓			✓	✓
Batch System	✓	✓					✓	✓
Flow System	✓	✓	✓	✓			✓	✓

- □ Build experimental capability (✓), test in ambient conditions; cross-validate with theoretical predictions and MC/MD simulation results (✓). In progress (✓)
- ☐ Develop high temperature/pressure in situ electrodes that are corrosion resistant; cross-validate with theory/simulations
- ☐ Implement in batch and flow systems for diagnostics/monitoring
- ☐ Search for external field effects for enhanced or ion-selective desalination

Project Outcomes - I

☐ Specific conductance measurement of NdCl₃ (aq) at elevated temperature and pressure

- ☐ Implemented IS capability and numerical algorithms to extract the conductance
- ☐ Specific conductance shows a maximum as Yoon showed in the MD simulations
- ☐ Different ion pairing behavior observed in NdCl₃ vs NaCl solutions at the same concentration

Project Outcomes - II

☐ DS of NdCl₃ in water and methanol

Dielectric spectrum measurement results and its decomposition based on relaxation time distribution

Principles behind the reflection measurement technique

- ☐ Challenging to implement DS in high-pressure/ high-temperature cell
- □ Demonstrated the suitability of the method to study ion cluster/complexation behavior
- ☐ Implemented capability and algorithms for DS measurement of variety of liquids

Project Outcomes - III

Publications

Experiment/Modeling:

"Electrical conductivity, ion pairing, and ion self-diffusion in aqueous NaCl solutions at elevated temperatures and pressures,"

Yoon, T. J., Patel, L. A., Vigil, M. J., Maerzke, K. A., Findikoglu, A. T., & Currier, R. P. (2019)., J. Chem. Phys., 151(22), 224504.

Dielectric Spectroscopy (DS):

"Dielectric relaxation of neodymium chloride in water and in methanol," Yoon, T. J., Vigil, M. J., Raby, E. Y., Singh, R. P., Maerzke, K. A., Currier, R. P. & Findikoglu, A. T. (2020), J. Mol. Liq. (under revision)

Impedance Spectroscopy (IS):

"Specific conductance of NdCl₃ in water along the vapor-liquid equilibrium," Yoon, T. J., Vigil, M. J., Sharan, P., Singh, R. P., Maerzke, K. A., Currier, R. P. & Findikoglu, A. T. (2020), J. Chem. Eng. Data (in preparation)

Summary of Outcomes and Future Work

- □ Built experimental capabilities (IS, DS, CV) and tested them in ambient conditions, and cross-validated them with theoretical predictions and results of MC/MD simulations
- ☐ Developed high-temperature/high-pressure in situ electrodes/probes that are corrosion resistant, and are in the process of deploying them in our batch and flow reactors
- □ Demonstrated the ability to use external drive forces (qE) to remove ions from simple salt solutions both experimentally and numerically
- ☐ Future work will include spectroscopic and MD/MC studies of multi-salt systems, implementations in batch and flow reactors, and investigations of the use of external drive forces for enhanced/selective separation of ions from complex salt solutions